skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singhal, Rajneesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abiotic stresses such as drought, heat, cold, salinity and flooding significantly impact plant growth, development and productivity. As the planet has warmed, these abiotic stresses have increased in frequency and intensity, affecting the global food supply and making it imperative to develop stress-resilient crops. In the past 20 years, the development of omics technologies has contributed to the growth of datasets for plants grown under a wide range of abiotic environments. Integration of these rapidly growing data using machine-learning (ML) approaches can complement existing breeding efforts by providing insights into the mechanisms underlying plant responses to stressful conditions, which can be used to guide the design of resilient crops. In this review, we introduce ML approaches and provide examples of how researchers use these approaches to predict molecular activities, gene functions and genotype responses under stressful conditions. Finally, we consider the potential and challenges of using such approaches to enable the design of crops that are better suited to a changing environment. This article is part of the theme issue ‘Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the ‘Resilience Revolution’?’. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026